Crystal structure of the BTB domain from PLZF.

نویسندگان

  • K F Ahmad
  • C K Engel
  • G G Privé
چکیده

The BTB domain (also known as the POZ domain) is an evolutionarily conserved protein-protein interaction motif found at the N terminus of 5-10% of C2H2-type zinc-finger transcription factors, as well as in some actin-associated proteins bearing the kelch motif. Many BTB proteins are transcriptional regulators that mediate gene expression through the control of chromatin conformation. In the human promyelocytic leukemia zinc finger (PLZF) protein, the BTB domain has transcriptional repression activity, directs the protein to a nuclear punctate pattern, and interacts with components of the histone deacetylase complex. The association of the PLZF BTB domain with the histone deacetylase complex provides a mechanism of linking the transcription factor with enzymatic activities that regulate chromatin conformation. The crystal structure of the BTB domain of PLZF was determined at 1.9 A resolution and reveals a tightly intertwined dimer with an extensive hydrophobic interface. Approximately one-quarter of the monomer surface area is involved in the dimer intermolecular contact. These features are typical of obligate homodimers, and we expect the full-length PLZF protein to exist as a branched transcription factor with two C-terminal DNA-binding regions. A surface-exposed groove lined with conserved amino acids is formed at the dimer interface, suggestive of a peptide-binding site. This groove may represent the site of interaction of the PLZF BTB domain with nuclear corepressors or other nuclear proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression, purification, characterization, and crystallization of the BTB/POZ domain from the PLZF oncoprotein.

The BTB/POZ domain defines a conserved region of about 120 residues and has been found in over 40 proteins to date. It is located predominantly at the N terminus of Zn-finger DNA-binding proteins, where it may function as a repression domain, and less frequently in actin-binding and poxvirus-encoded proteins, where it may function as a protein-protein interaction interface. A prototypic human B...

متن کامل

Structure-function studies of the BTB/POZ transcriptional repression domain from the promyelocytic leukemia zinc finger oncoprotein.

The evolutionarily conserved BTB/POZ domain from the promyelocytic leukemia zinc finger (PLZF) oncoprotein mediates transcriptional repression through the recruitment of corepressor proteins containing histone deacetylases in acute promyelocytic leukemia. We have determined the 2.0 A crystal structure of the BTB/POZ domain from PLZF (PLZF-BTB/POZ), and have carried out biochemical analysis of P...

متن کامل

Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors.

The PLZF (promyelocytic leukemia zinc finger) transcriptional repressor, when fused to retinoic acid receptor alpha (RARalpha), causes a refractory form of acute promyelocytic leukemia. The highly conserved N-terminal BTB (bric a brac, tramtrack, broad complex)/POZ domain of PLZF plays a critical role in this disease, since it is required for transcriptional repression by the PLZF-RARalpha fusi...

متن کامل

In-depth mutational analysis of the promyelocytic leukemia zinc finger BTB/POZ domain reveals motifs and residues required for biological and transcriptional functions.

The promyelocytic leukemia zinc finger (PLZF) protein is a transcription factor disrupted in patients with t(11;17)(q23;q21)-associated acute promyelocytic leukemia. PLZF contains an N-terminal BTB/POZ domain which is required for dimerization, transcriptional repression, formation of high-molecular-weight DNA-protein complexes, nuclear sublocalization, and growth suppression. X-ray crystallogr...

متن کامل

The integrity of the charged pocket in the BTB/POZ domain is essential for the phenotype induced by the leukemia-associated t(11;17) fusion protein PLZF/RARalpha.

Acute myeloid leukemia is characterized by a differentiation block as well as by an increased self-renewal of hematopoietic precursors in the bone marrow. This phenotype is induced by specific acute myeloid leukemia-associated translocations, such as t(15;17) and t(11;17), which involve an identical portion of the retinoic acid receptor alpha (RARalpha) and either the promyelocytic leukemia (PM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 21  شماره 

صفحات  -

تاریخ انتشار 1998